
Table 1: Classification Performance for Unsupervised Representations

Turning Reaction Nodes to Points in Space

General Procedure

o Randomly Place Points
o Repeat:

• Pick a small group of nodes
• Check how they are related in 

the network
• Check how their points are 

arranged
• Move the points slightly to 

better fit the relationships
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Summary

• Networks of chemical reactions naturally encode 
patterns in their structure

• Existing methods can effectively encode this 
structure in vector representations

• Without supervision, this method outperforms 
both traditional and ML-based embeddings

• With supervision, this method achieves 
competitive performance with a fraction of the 
cost

For both chemists and computers, datasets of chemical 
reactions are hard to use. One approach is to represent 
reactions as points in space, where the distance between 
the points corresponds to the similarity between reactions. 
We do this by first converting reactions into nodes in a 
network of chemical data, and then test two existing 
techniques for converting network nodes into points.
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Figure 7:  TMAP plot of 
Node2Vec-based vectors 
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Organizing Chemical Reactions with
Network Representation Learning
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Figure 3: Part of the actual 
network

Creating a Network of Reactions
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Figure 2: The overall structure
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Heteroatom Alkylation and Arylation

Acylation and Related Processes

C-C Bond Formation

Heterocycle Formation

Protections

Deprotections

Reductions

Oxidations

Functional Group Interconversions

Functional Group Additions

Resolutions

Predicting Reaction Labels

Table 2: Classification Performance for Supervised Representations

Traditional: Morgan Fingerprints
Machine Learning: RXNFP3 (SMILES-Based Transformer)

Figure 1: An example reaction (top) and 
it’s template (bottom)

Figure 5: Geometric relationships 
enforced by RotatE for relationships of 

the form           .h tr

Figure taken from the original 
RotatE Paper4


