

Organizing Chemical Reactions with Network Representation Learning

Blake B. Gaines¹, Minghu Song², Jinbo Bi¹ ¹UConn Computer Science and Engineering, ²UConn Biomedical Engineering

Abstract

For both chemists and computers, datasets of chemical reactions are hard to use. One approach is to represent reactions as points in space, where the distance between the points corresponds to the similarity between reactions. We do this by first converting reactions into nodes in a network of chemical data, and then test two existing techniques for converting network nodes into points.

Creating a Network of Reactions

Figure 1: An example reaction (top) and *it's template (bottom)*

Turning Reaction Nodes to Points in Space

General Procedure

- Randomly Place Points Ο
- Repeat: Ο
 - Pick a small group of nodes
 - Check how they are related in the network
 - Check how their points are arranged

Figure 5: Geometric relationships enforced by RotatE for relationships of the form h^r.

Predicting Reaction Labels

Table 1: Classification Performance for Unsupervised Representations

		Accuracy	Overall MCC	Overall CEN
Fingerprint	Classifier			
Traditional	5-NN	0.688	0.675	0.218
	LR	0.671	0.651	0.199
Machine Learning	5-NN	0.811	0.802	0.126
	LR	0.781	0.768	0.141
Ours (Node2Vec)	5-NN	0.815	0.809	0.114
	LR	0.946	0.944	0.039

Table 2: Classification Performance for Supervised Representations

		Accuracy	Overall MCC	Overall CEN
Fingerprint	Classifier			
Machine Learning	5-NN	0.986	0.986	0.012
	LR	0.986	0.985	0.012
Ours (RotatE)	5-NN	0.843	0.841	0.102
	LR	0.754	0.755	0.158
	geometric	0.696	0.701	0.173
Ours (Node2Vec)	5-NN	0.851	0.850	0.088
	LR	0.962	0.960	0.031

Move the points slightly to better fit the relationships

> Figure taken from the original RotatE Paper⁴

Figure 7: TMAP plot of Node2Vec-based vectors for "Heteroatom Alkylation and Arylation" reactions

> Legend of **Reaction Subclasses**

Chloro- N-arylation SNAr ether synthesis Aldehyde reductive amination Fluoro N-arylation **Bromo N-arylation** Bromo N-alkylation Williamson ether synthesis Bromo Buchwald-Hartwig amination **Chloro N-alkylation** Mitsunobu Aryl ether synthesis

Traditional: Morgan Fingerprints Machine Learning: RXNFP³ (SMILES-Based Transformer)

Summary

- Networks of chemical reactions naturally encode ulletpatterns in their structure
- Existing methods can effectively encode this • structure in vector representations
- Without supervision, this method outperforms \bullet both traditional and ML-based embeddings
- With supervision, this method achieves ulletcompetitive performance with a fraction of the cost

References

- 1. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H., & Jensen, K. F. (2017). Prediction of Organic Reaction Outcomes Using Machine Learning. ACS Central Science, 3(5), 434–443.
- 2. Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. ArXiv:1607.00653 [Cs, Stat].
- Schwaller, P., Probst, D., Vaucher, A. C., Nair, V. H., Kreutter, D., Laino, T., & Reymond, J.-L. (2021). 3. Mapping the space of chemical reactions using attention-based neural networks. Nature Machine Intelligence, 3(2), 144–152.
- 4. Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. ArXiv:1902.10197 [Cs, Stat].