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INTRODUCTION FRAMEWORK
PARTIAL DIFFERENTIAL EQUATIONS (PDES) '

Predict State Variable in time and space

* Explain changes in time and space

 Discover PDE models from data when space between
measurements is small
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BROADLY SPACED DATA

e Spacing sensors frequently may be difficult or expensive

 Measuring chemical species is often done at the outlet of a reactor ) |
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OPPORTUNITY aCa estimation scheme

Create partial differential equation models from broadly spaced
measurements
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RESULTS

RECOVER UNKNOWN PHYSICS FROM DATA
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SYMBOLIC REGRESSION VIA GENETIC PROGRAMMING oot s P
Symbolic Regression Genetic Programming * Successfully recovered model structure and parameters
 Discover model shape * I|nspired by evolution  No predefined combinations of argument set terms

*  Physics-informed * Mutation CONCLUSIONS AND FUTURE WORK
* Data-driven * Cross-over CONCLUSIONS

* |dentify parameters

* Framework can recover simple PDE models

* Framework can discard terms from argument set
. @ * Framework does not need predefined combinations of terms
FUTURE WORK
@ @ @ @ @ e o * Increase system model complexity (non-isothermal reactors)
Mutation

Crossover  Leverage information theory for optimal design of experiments
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