Automatic Discovery of Partial Differential Equation Models from Broadly Spaced Data

UCONN SCHOOL OF ENGINEERING

CHEMICAL & BIOMOLECULAR ENGINEERING

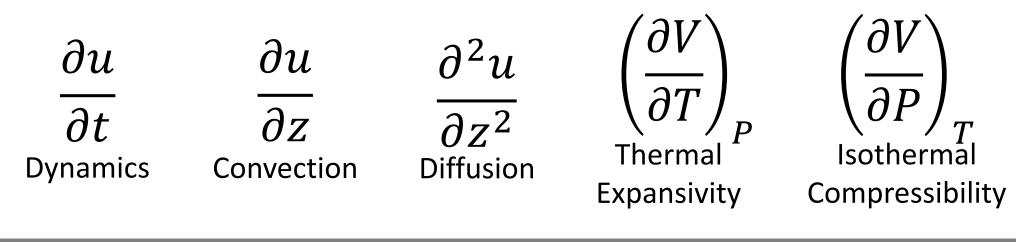
<u>Benjamin Cohen¹</u>, Burcu Beykal^{1,2}, George Bollas¹

¹Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT; ²Center for Clean Energy Engineering, University of Connecticut, Storrs, CT;

INTRODUCTION

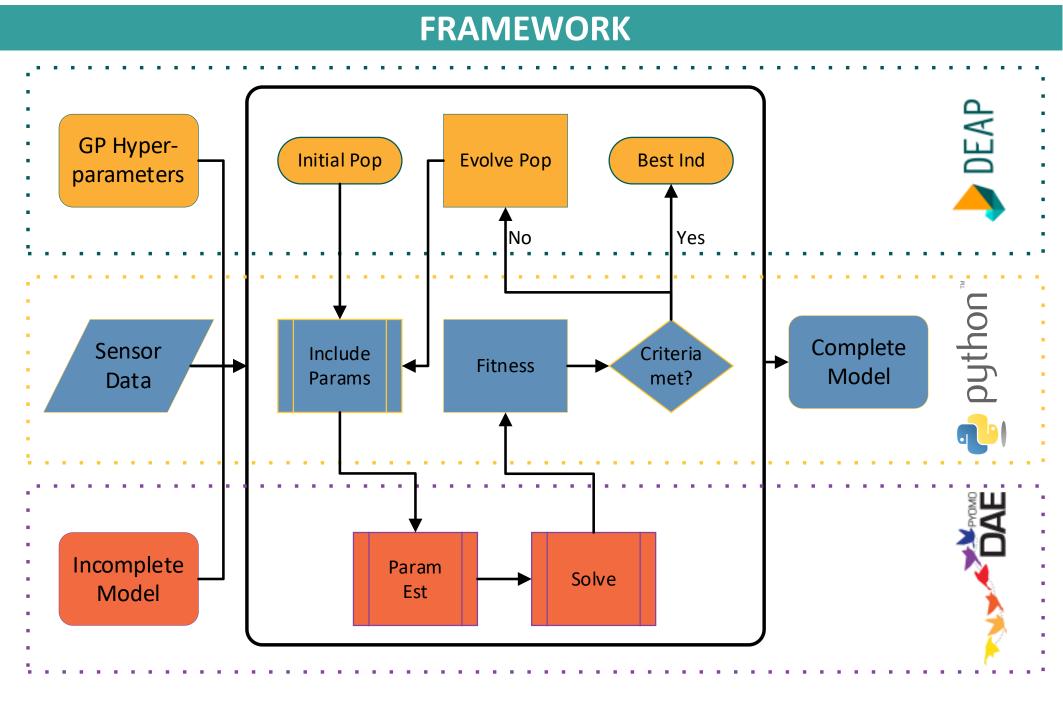
PARTIAL DIFFERENTIAL EQUATIONS (PDES)

- Predict State Variable in time and space
- Explain changes in time and space
- Discover PDE models from data when space between measurements is small

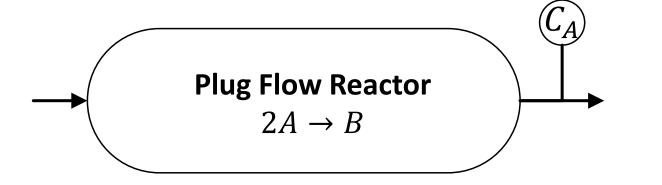


BROADLY SPACED DATA

- Spacing sensors frequently may be difficult or expensive
- Measuring chemical species is often done at the outlet of a reactor



 $s^* \in \arg\min_{s \in S} I(s)$



OPPORTUNITY

Create partial differential equation models from broadly spaced measurements

RECOVER UNKNOWN PHYSICS FROM DATA

CHEMICAL REACTOR PHYSICS

$$\frac{\partial C_A}{\partial t} = s \left(C_A, \frac{\partial C_A}{\partial z}, \frac{\partial^2 C_A}{\partial z^2}, \nu, C_{A,f} \right)$$

•

PHYSICS

- Dynamics:
- Reaction:
- Convection:
- Diffusion:

• Initial Condition:
$$C_A = 0$$
 at $t = 0$

 $\frac{\partial C_A}{\partial t}$

 θC_A^{ϕ}

 $\theta \, \frac{\partial C_A}{\partial z}$

 $\theta \, \frac{\partial^2 C_A}{\partial z^2}$

• Inlet Condition:
$$C_A = C_{A,f}$$
 at $z = 0$

s.t.

$$\theta^* \in \arg\min_{\theta \in \mathbb{R}} \frac{1}{t_f} \int_0^{t_f} (\hat{C}_A - C_{A,meas}) dt$$
s.t.

$$\frac{\partial C_A}{\partial t} - s = 0$$

$$C_A = 0 \text{ at } t = 0$$

$$C_A = C_{A,f} \text{ at } z = 0$$

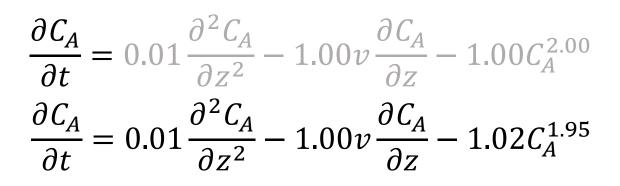
$$\frac{\partial C_A}{\partial z} = 0 \text{ at } z = l$$

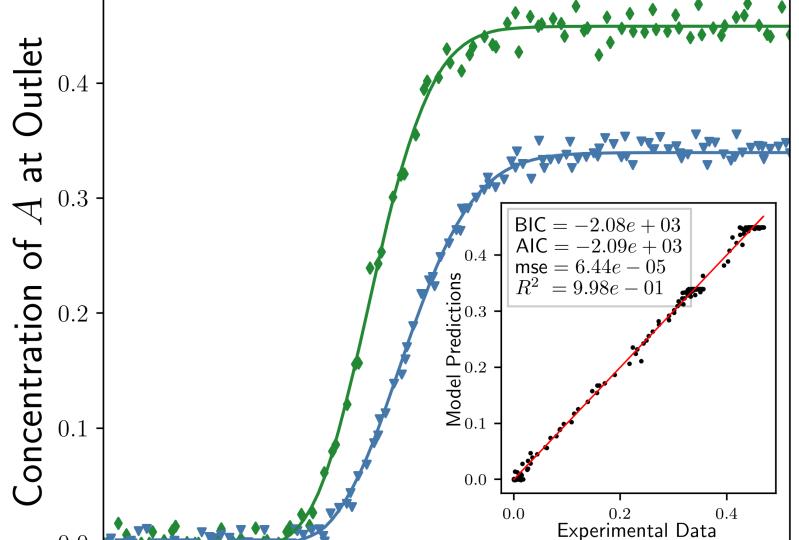
$$t \in [0, t_f], z \in [0, l]$$

- Minimize Information Theoretic
 Criterion, I(s)
- Find least complex model that agrees with data
- Gradient-based parameter
 estimation scheme

RESULTS

PLUG FLOW REACTOR (PFR)





• Outlet Condition: $\frac{\partial C_A}{\partial z} = 0$ at z = l

SYMBOLIC REGRESSION VIA GENETIC PROGRAMMING

Symbolic Regression

- Discover model shape
- Physics-informed
- Data-driven
- Identify parameters

Inspired by evolution

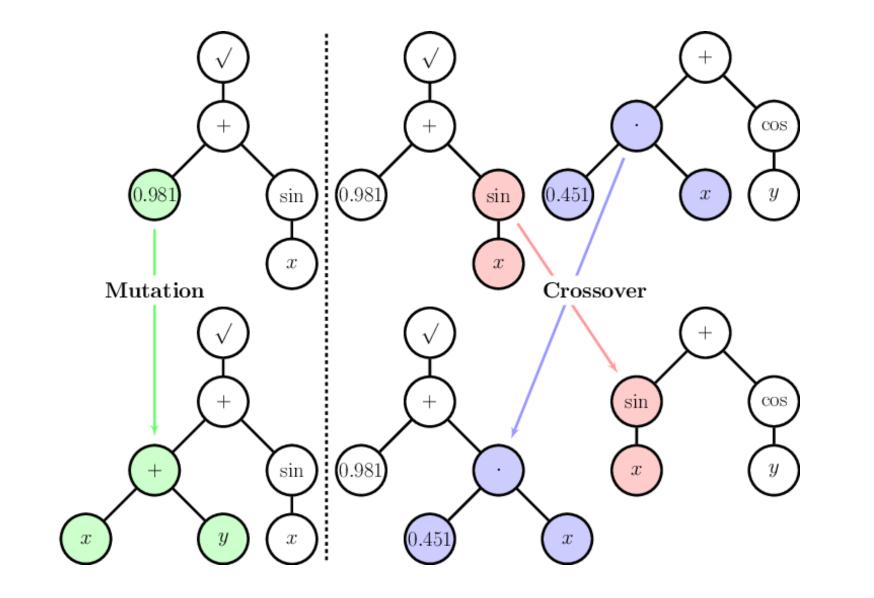
CONTROLS

Feed Concentration: $\theta C_{A,f}$

 θv

Flow Velocity:

- Mutation
- Cross-over



0.0 -									
0.0			1.0	1.5	2.0	2.5	3.0	3.5	4.0
					t				
	Recovered Model $C_{A,f} = 2.00, v = 0.55$					Experime	ental Data C	$A_{A,f} = 2.00, c$	v = 0.55
	Recov	vered Mo	del $C_{A,f} =$	= 1.00, v = 0	.50	Experime	ental Data C	$A_{,f} = 1.00, c$	v = 0.50

- Successfully recovered model structure and parameters
- No predefined combinations of argument set terms

CONCLUSIONS AND FUTURE WORK

CONCLUSIONS

- Framework can recover simple PDE models
- Framework can discard terms from argument set
- Framework does not need predefined combinations of terms

FUTURE WORK

- Increase system model complexity (non-isothermal reactors)
- Leverage information theory for optimal design of experiments

REFERENCES

- Fortin, F.-A., et al. (2012). DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning Research, https://github.com/DEAP/deap
- Quade, M., et al. (2016). Prediction of dynamical systems by symbolic regression. *Physical Review E*, https://doi.org/10.1103/PhysRevE.94.012214
- Messenger, D.A., and Bortz, D.M. (2020). Weak SINDy for Partial Differential Equations. Journal of Computational Physics, https://doi.org/10.1016/j.cp.2021.110525