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INTRODUCTION

• Predict State Variable in time and space

• Explain changes in time and space

• Discover PDE models from data when space between 
measurements is small

FRAMEWORK

PLUG FLOW REACTOR (PFR)
RECOVER UNKNOWN PHYSICS FROM DATA

• Fortin, F.-A., et al. (2012). DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning Research,
https://github.com/DEAP/deap

• Quade, M., et al. (2016). Prediction of dynamical systems by symbolic regression. Physical Review E,
https://doi.org/10.1103/PhysRevE.94.012214

• Messenger, D.A., and Bortz, D.M. (2020). Weak SINDy for Partial Differential Equations. Journal of Computational
Physics, https://doi.org/10.1016/j.cp.2021.110525

OPPORTUNITY
Create partial differential equation models from broadly spaced 
measurements

Genetic Programming

• Inspired by evolution

• Mutation

• Cross-over
CONCLUSIONS AND FUTURE WORK

• Minimize Information Theoretic 
Criterion, 𝐼(𝑠)

• Find least complex model that 
agrees with data

• Gradient-based parameter 
estimation scheme

REFERENCES

• Framework can recover simple PDE models

• Framework can discard terms from argument set

• Framework does not need predefined combinations of terms

CONCLUSIONS

FUTURE WORK

• Increase system model complexity (non-isothermal reactors)

• Leverage information theory for optimal design of experiments

RESULTS
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PARTIAL DIFFERENTIAL EQUATIONS (PDES)

BROADLY SPACED DATA
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• Spacing sensors frequently may be difficult or expensive

• Measuring chemical species is often done at the outlet of a reactor

CHEMICAL REACTOR PHYSICS

SYMBOLIC REGRESSION VIA GENETIC PROGRAMMING

𝜕𝐶𝐴
𝜕𝑡

= 𝑠 𝐶𝐴,
𝜕𝐶𝐴
𝜕𝑧

,
𝜕2𝐶𝐴
𝜕𝑧2

, 𝑣, 𝐶𝐴,𝑓

• Dynamics: 
𝜕𝐶𝐴

𝜕𝑡

• Reaction: 𝜃𝐶𝐴
𝜙

• Convection: 𝜃
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• Diffusion: 𝜃
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• Flow Velocity: 𝜃𝑣

• Feed Concentration:   𝜃𝐶𝐴,𝑓

PHYSICS CONTROLS

• Initial Condition: 𝐶𝐴 = 0 at 𝑡 = 0

• Inlet Condition: 𝐶𝐴 = 𝐶𝐴,𝑓 at z = 0

• Outlet Condition: 
𝜕𝐶𝐴

𝜕𝑧
= 0 at 𝑧 = 𝑙

Symbolic Regression

• Discover model shape

• Physics-informed

• Data-driven

• Identify parameters

• Successfully recovered model structure and parameters

• No predefined combinations of argument set terms
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Plug Flow Reactor
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