
4. Finite structure analysis

Finite structure analysis. Frequency response functions of (a) finite solid cube and (d) finite air cube. [7]
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1. Introduction

Metamaterials are arrangements of basic building blocks (i.e., unit cell) that repeat in space, giving rise to 
intriguing dynamics such as bandgaps. [1]. In addition, Metamaterials have interesting properties, such as
polar elasticity, and negative effective properties(Poisson’s ratio, mass-density, and stiffness). [2-3]

In the  literature, researchers studied on metamaterials with remarkable properties and these studies can be 
loosely classified into three categories: [4-6]

(1) mechanical metamaterials                        (2) acoustic metamaterials                           (3) elastic metamaterials
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2. Concept

In this study, we study Auxetic vibro-acoustic metamaterial that can attenuate both elastic and acoustic waves. [7]

3. Unit cell analysis

Dispersion curves of the auxetic metamaterial for (a) mechanical vibrations and (b) airborne sound (bandgap 
regions are highlighted in gray). [7]

4. Tunability of the transmission

Numerical realization
Band gap tuning. Change in the upper and lower bandgap frequency range as a function of 
deformation (%). (b) Relative bandgap size as a function of deformation (%).

7. Conclusions

 We present a design methodology, simulations, and experiments of an auxetic, anisotropic 
metamaterial that can simultaneously attenuate both elastic vibrations and airborne sound in 
all directions. 

 Due to the auxetic nature of the metamaterial, an applied load, either in compression or 
tension, causes a systematic shape change within the unit cell.

 The resulting transformation in geometry induces a shift in the attenuated frequency ranges 
for both sound and vibrations, independently. 

 Our results can open new avenues for the design of tunable multi-functional metamaterials, 
with potential application in vibration and sound control.
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5. Tunability of the transmission

Experimental realization

(a) We replicate the numeric experimentally and plot the response of both the numerical and
experimental transmission as a function of frequency. (b) To tune the band gap we start to
compress the sample and measure the response of the sample.

(a) (b)
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