Tunable auxetic metamaterials for simultaneous attenuation
of airborne sound and elastic vibrations in all directions
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1. Introduction 4. Tunability of the transmission Compressed Stretched
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Metamaterials are arrangements of basic building blocks (i.e., unit cell) that repeat in space, giving rise to Numerical realization Ll M (L X\
intriguing dynamics such as bandgaps. [1]. In addition, Metamaterials have interesting properties, such as

polar elasticity, and negative effective properties(Poisson’s ratio, mass-density, and stiffness). [2-3] Band gap tuning. Change in the upper and lower bandgap frequency range as a function of

deformation (%). (b) Relative bandgap size as a function of deformation (%).
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In the literature, researchers studied on metamaterials with remarkable properties and these studies can be -4 -2 0 2 4 6 8101214 -4 -2 0 2 4 6 8 101214

loosely classified into three categories: [4-6] Deformation [0/0] Deformation [(Vo]

(1) mechanical metamaterials (2) acoustic metamaterials (3) elastic metamaterials

2. Concept 5. Tunability of the transmission

In this study, we study Auxetic vibro-acoustic metamaterial that can attenuate both elastic and acoustic waves. [7] Experimental realization

(a) We replicate the numeric experimentally and plot the response of both the numerical and
No N Z | experimental transmission as a function of frequency. (b) To tune the band gap we start to
: : = : y_.-i-’:* compress the sample and measure the response of the sample.
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3. Unit cell analysis
7. Conclusions

Dispersion curves of the auxetic metamaterial for (a) mechanical vibrations and (b) airborne sound (bandgap
regions are highlighted in gray). [7]

(a) oY, - > ** We present a design methodology, simulations, and experiments of an auxetic, anisotropic
Wi q metamaterial that can simultaneously attenuate both elastic vibrations and airborne sound in
Solid cell = all directions.
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+* Due to the auxetic nature of the metamaterial, an applied load, either in compression or
tension, causes a systematic shape change within the unit cell.

(0 o)

** The resulting transformation in geometry induces a shift in the attenuated frequency ranges
for both sound and vibrations, independently.

¢ Our results can open new avenues for the design of tunable multi-functional metamaterials,
with potential application in vibration and sound control.
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