

Tunable auxetic metamaterials for simultaneous attenuation of airborne sound and elastic vibrations in all directions

Majid Kheybari, Chiara Daraio, Osama R. Bilal

Department of Mechanical Engineering, University of Connecticut, Storrs, USA. Email: Majid.Kheybari@uconn.edu

4. Tunability of the transmission

Wave Engineering through

eXtreme & Intelligent matTEr

Numerical realization

Band gap tuning. Change in the upper and lower bandgap frequency range as a function of deformation (%). (b) Relative bandgap size as a function of deformation (%).

1. Introduction

Metamaterials are arrangements of basic building blocks (i.e., unit cell) that repeat in space, giving rise to intriguing dynamics such as bandgaps. [1]. In addition, Metamaterials have interesting properties, such as polar elasticity, and negative effective properties (Poisson's ratio, mass-density, and stiffness). [2-3]

In the literature, researchers studied on metamaterials with remarkable properties and these studies can be loosely classified into three categories: [4-6]

(1) mechanical metamaterials (2) acoustic metamaterials

(3) elastic metamaterials

2. Concept

In this study, we study Auxetic vibro-acoustic metamaterial that can attenuate both elastic and acoustic waves. [7]

3. Unit cell analysis

Dispersion curves of the auxetic metamaterial for (a) mechanical vibrations and (b) airborne sound (bandgap regions are highlighted in gray). [7]

5. Tunability of the transmission

Experimental realization

(a) We replicate the numeric experimentally and plot the response of both the numerical and experimental transmission as a function of frequency. (b) To tune the band gap we start to compress the sample and measure the response of the sample.

7. Conclusions

- We present a design methodology, simulations, and experiments of an auxetic, anisotropic metamaterial that can simultaneously attenuate both elastic vibrations and airborne sound in all directions.
- Due to the auxetic nature of the metamaterial, an applied load, either in compression or tension, causes a systematic shape change within the unit cell.
- The resulting transformation in geometry induces a shift in the attenuated frequency ranges for both sound and vibrations, independently.

4. Finite structure analysis

Our results can open new avenues for the design of tunable multi-functional metamaterials, with potential application in vibration and sound control.

References

[1] O. R. Bilal, R. S€usstrunk, C. Daraio, and S. D. Huber, "Intrinsically polar elastic metamaterials," Adv. Mater. 29, 1700540 (2017).

[2] X. Hou and V. V. Silberschmidt, "Metamaterials with negative Poisson's ratio: A review of mechanical properties and deformation mechanisms," in Mechanics of Advanced Materials: Engineering Materials, edited by V. Silberschmidt and V. Matveenko (Springer, Cham, 2015).

[3] H. Huang, C. Sun, and G. Huang, "On the negative effective mass density in acoustic metamaterials," Int. J. Eng. Sci. 47, 610-617 (2009).

[4] Surjadi, James Utama, Libo Gao, Huifeng Du, Xiang Li, Xiang Xiong, Nicholas Xuanlai Fang, and Yang Lu. "Mechanical metamaterials and their engineering applications." Advanced Engineering Materials 21, no. 3 (2019): 1800864.

[5] Li, Guan-Hua, Yi-Ze Wang, and Yue-Sheng Wang. "Active control on switchable waveguide of elastic wave metamaterials with the 3D printing technology." Scientific reports 9, no. 1 (2019): 1-8.

[6] Kheybari, Majid, Zihan Wang, Hongyi Xu, and Osama R. Bilal. "Programmability of ultrathin metasurfaces through curvature." Extreme Mechanics Letters 52 (2022): 101620.

[7] Kheybari, Majid, Chiara Daraio, and Osama R. Bilal. "Tunable auxetic metamaterials for simultaneous attenuation of airborne sound and elastic vibrations in all directions." Applied Physics Letters 121, no. 8 (2022): 081702. Published as a featured article.